3.4.90 \(\int \frac {1}{\sqrt {d+e x^2} (a+b x^2+c x^4)} \, dx\) [390]

Optimal. Leaf size=243 \[ \frac {2 c \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {2 c \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \]

[Out]

2*c*arctan(x*(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))/(-4*a*c+b^2)
^(1/2)/(2*c*d-e*(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-2*c*arctan(x*(2*c*d-e*(b+(-4*a*c+b^
2)^(1/2)))^(1/2)/(e*x^2+d)^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))/(-4*a*c+b^2)^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)
/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 243, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {1188, 385, 211} \begin {gather*} \frac {2 c \text {ArcTan}\left (\frac {x \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-e \left (b-\sqrt {b^2-4 a c}\right )}}-\frac {2 c \text {ArcTan}\left (\frac {x \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}{\sqrt {\sqrt {b^2-4 a c}+b} \sqrt {d+e x^2}}\right )}{\sqrt {b^2-4 a c} \sqrt {\sqrt {b^2-4 a c}+b} \sqrt {2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x^2]*(a + b*x^2 + c*x^4)),x]

[Out]

(2*c*ArcTan[(Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[
b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[2*c*d - (b - Sqrt[b^2 - 4*a*c])*e]) - (2*c*ArcTan[(Sqrt[2*c*d -
(b + Sqrt[b^2 - 4*a*c])*e]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[d + e*x^2])])/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt
[b^2 - 4*a*c]]*Sqrt[2*c*d - (b + Sqrt[b^2 - 4*a*c])*e])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 1188

Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{r = Rt[b^2 - 4*a*c, 2]
}, Dist[2*(c/r), Int[(d + e*x^2)^q/(b - r + 2*c*x^2), x], x] - Dist[2*(c/r), Int[(d + e*x^2)^q/(b + r + 2*c*x^
2), x], x]] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Integ
erQ[q]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d+e x^2} \left (a+b x^2+c x^4\right )} \, dx &=\frac {(2 c) \int \frac {1}{\left (b-\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}} \, dx}{\sqrt {b^2-4 a c}}-\frac {(2 c) \int \frac {1}{\left (b+\sqrt {b^2-4 a c}+2 c x^2\right ) \sqrt {d+e x^2}} \, dx}{\sqrt {b^2-4 a c}}\\ &=\frac {(2 c) \text {Subst}\left (\int \frac {1}{b-\sqrt {b^2-4 a c}-\left (-2 c d+\left (b-\sqrt {b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{\sqrt {b^2-4 a c}}-\frac {(2 c) \text {Subst}\left (\int \frac {1}{b+\sqrt {b^2-4 a c}-\left (-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e\right ) x^2} \, dx,x,\frac {x}{\sqrt {d+e x^2}}\right )}{\sqrt {b^2-4 a c}}\\ &=\frac {2 c \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b-\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b-\sqrt {b^2-4 a c}\right ) e}}-\frac {2 c \tan ^{-1}\left (\frac {\sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e} x}{\sqrt {b+\sqrt {b^2-4 a c}} \sqrt {d+e x^2}}\right )}{\sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}} \sqrt {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.13, size = 179, normalized size = 0.74 \begin {gather*} -2 e^{3/2} \text {RootSum}\left [c d^4-4 c d^3 \text {$\#$1}+4 b d^2 e \text {$\#$1}+6 c d^2 \text {$\#$1}^2-8 b d e \text {$\#$1}^2+16 a e^2 \text {$\#$1}^2-4 c d \text {$\#$1}^3+4 b e \text {$\#$1}^3+c \text {$\#$1}^4\&,\frac {\log \left (d+2 e x^2-2 \sqrt {e} x \sqrt {d+e x^2}-\text {$\#$1}\right ) \text {$\#$1}}{-c d^3+b d^2 e+3 c d^2 \text {$\#$1}-4 b d e \text {$\#$1}+8 a e^2 \text {$\#$1}-3 c d \text {$\#$1}^2+3 b e \text {$\#$1}^2+c \text {$\#$1}^3}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x^2]*(a + b*x^2 + c*x^4)),x]

[Out]

-2*e^(3/2)*RootSum[c*d^4 - 4*c*d^3*#1 + 4*b*d^2*e*#1 + 6*c*d^2*#1^2 - 8*b*d*e*#1^2 + 16*a*e^2*#1^2 - 4*c*d*#1^
3 + 4*b*e*#1^3 + c*#1^4 & , (Log[d + 2*e*x^2 - 2*Sqrt[e]*x*Sqrt[d + e*x^2] - #1]*#1)/(-(c*d^3) + b*d^2*e + 3*c
*d^2*#1 - 4*b*d*e*#1 + 8*a*e^2*#1 - 3*c*d*#1^2 + 3*b*e*#1^2 + c*#1^3) & ]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.12, size = 151, normalized size = 0.62

method result size
default \(-2 e^{\frac {3}{2}} \left (\munderset {\textit {\_R} =\RootOf \left (c \,\textit {\_Z}^{4}+\left (4 e b -4 c d \right ) \textit {\_Z}^{3}+\left (16 a \,e^{2}-8 d e b +6 c \,d^{2}\right ) \textit {\_Z}^{2}+\left (4 d^{2} e b -4 c \,d^{3}\right ) \textit {\_Z} +d^{4} c \right )}{\sum }\frac {\textit {\_R} \ln \left (\left (\sqrt {e \,x^{2}+d}-\sqrt {e}\, x \right )^{2}-\textit {\_R} \right )}{c \,\textit {\_R}^{3}+3 \textit {\_R}^{2} b e -3 \textit {\_R}^{2} c d +8 \textit {\_R} a \,e^{2}-4 \textit {\_R} b d e +3 c \,d^{2} \textit {\_R} +d^{2} e b -c \,d^{3}}\right )\) \(151\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^4+b*x^2+a)/(e*x^2+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*e^(3/2)*sum(_R/(_R^3*c+3*_R^2*b*e-3*_R^2*c*d+8*_R*a*e^2-4*_R*b*d*e+3*_R*c*d^2+b*d^2*e-c*d^3)*ln(((e*x^2+d)^
(1/2)-e^(1/2)*x)^2-_R),_R=RootOf(c*_Z^4+(4*b*e-4*c*d)*_Z^3+(16*a*e^2-8*b*d*e+6*c*d^2)*_Z^2+(4*b*d^2*e-4*c*d^3)
*_Z+d^4*c))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+b*x^2+a)/(e*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^4 + b*x^2 + a)*sqrt(x^2*e + d)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 4577 vs. \(2 (209) = 418\).
time = 3.69, size = 4577, normalized size = 18.84 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+b*x^2+a)/(e*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

1/4*sqrt(1/2)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e + ((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b^2
 - 4*a^3*c)*e^2)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^3*b*
c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d*e^3 + (a^4*b^2 - 4*a^5*c)
*e^4)))/((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e^2))*log((b*c^2*d^2*x^2 +
4*a*b*c*x^2*e^2 - 2*a*c^2*d^2 + 2*sqrt(1/2)*((a*b^2*c - 4*a^2*c^2)*d*x*e - (a*b^3 - 4*a^2*b*c)*x*e^2 + (2*(a^2
*b^2*c^2 - 4*a^3*c^3)*d^3*x - 3*(a^2*b^3*c - 4*a^3*b*c^2)*d^2*x*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d*x*e^
2 - (a^3*b^3 - 4*a^4*b*c)*x*e^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*
b^3*c - 4*a^3*b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d*e^3 + (a^
4*b^2 - 4*a^5*c)*e^4)))*sqrt(x^2*e + d)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e + ((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 -
 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e^2)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4
 - 2*(a^2*b^3*c - 4*a^3*b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d
*e^3 + (a^4*b^2 - 4*a^5*c)*e^4)))/((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e
^2)) + (2*a*b*c*d - (b^2*c + 4*a*c^2)*d*x^2)*e + ((a*b^2*c^2 - 4*a^2*c^3)*d^3*x^2 - (a*b^3*c - 4*a^2*b*c^2)*d^
2*x^2*e + (a^2*b^2*c - 4*a^3*c^2)*d*x^2*e^2)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d
^4 - 2*(a^2*b^3*c - 4*a^3*b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)
*d*e^3 + (a^4*b^2 - 4*a^5*c)*e^4)))/x^2) - 1/4*sqrt(1/2)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e + ((a*b^2*c - 4*a^2*c^
2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e^2)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2
 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^3*b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d^2*e^2 - 2*(a^3*b
^3 - 4*a^4*b*c)*d*e^3 + (a^4*b^2 - 4*a^5*c)*e^4)))/((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2
*b^2 - 4*a^3*c)*e^2))*log((b*c^2*d^2*x^2 + 4*a*b*c*x^2*e^2 - 2*a*c^2*d^2 - 2*sqrt(1/2)*((a*b^2*c - 4*a^2*c^2)*
d*x*e - (a*b^3 - 4*a^2*b*c)*x*e^2 + (2*(a^2*b^2*c^2 - 4*a^3*c^3)*d^3*x - 3*(a^2*b^3*c - 4*a^3*b*c^2)*d^2*x*e +
 (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d*x*e^2 - (a^3*b^3 - 4*a^4*b*c)*x*e^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^
2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^3*b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d^
2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d*e^3 + (a^4*b^2 - 4*a^5*c)*e^4)))*sqrt(x^2*e + d)*sqrt(-(b*c*d - (b^2 - 2*a*c
)*e + ((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e^2)*sqrt((c^2*d^2 - 2*b*c*d*
e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^3*b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a
^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d*e^3 + (a^4*b^2 - 4*a^5*c)*e^4)))/((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b
^3 - 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e^2)) + (2*a*b*c*d - (b^2*c + 4*a*c^2)*d*x^2)*e + ((a*b^2*c^2 - 4*a^
2*c^3)*d^3*x^2 - (a*b^3*c - 4*a^2*b*c^2)*d^2*x^2*e + (a^2*b^2*c - 4*a^3*c^2)*d*x^2*e^2)*sqrt((c^2*d^2 - 2*b*c*
d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^3*b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8
*a^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d*e^3 + (a^4*b^2 - 4*a^5*c)*e^4)))/x^2) + 1/4*sqrt(1/2)*sqrt(-(b*c
*d - (b^2 - 2*a*c)*e - ((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e^2)*sqrt((c
^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^3*b*c^2)*d^3*e + (a^2*b^4 -
2*a^3*b^2*c - 8*a^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d*e^3 + (a^4*b^2 - 4*a^5*c)*e^4)))/((a*b^2*c - 4*a^
2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e^2))*log((b*c^2*d^2*x^2 + 4*a*b*c*x^2*e^2 - 2*a*c^
2*d^2 + 2*sqrt(1/2)*((a*b^2*c - 4*a^2*c^2)*d*x*e - (a*b^3 - 4*a^2*b*c)*x*e^2 - (2*(a^2*b^2*c^2 - 4*a^3*c^3)*d^
3*x - 3*(a^2*b^3*c - 4*a^3*b*c^2)*d^2*x*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d*x*e^2 - (a^3*b^3 - 4*a^4*b*c
)*x*e^3)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^3*b*c^2)*d^3
*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d*e^3 + (a^4*b^2 - 4*a^5*c)*e^4)))*
sqrt(x^2*e + d)*sqrt(-(b*c*d - (b^2 - 2*a*c)*e - ((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b
^2 - 4*a^3*c)*e^2)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^3*
b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4*c^2)*d^2*e^2 - 2*(a^3*b^3 - 4*a^4*b*c)*d*e^3 + (a^4*b^2 - 4*a^5*
c)*e^4)))/((a*b^2*c - 4*a^2*c^2)*d^2 - (a*b^3 - 4*a^2*b*c)*d*e + (a^2*b^2 - 4*a^3*c)*e^2)) + (2*a*b*c*d - (b^2
*c + 4*a*c^2)*d*x^2)*e - ((a*b^2*c^2 - 4*a^2*c^3)*d^3*x^2 - (a*b^3*c - 4*a^2*b*c^2)*d^2*x^2*e + (a^2*b^2*c - 4
*a^3*c^2)*d*x^2*e^2)*sqrt((c^2*d^2 - 2*b*c*d*e + b^2*e^2)/((a^2*b^2*c^2 - 4*a^3*c^3)*d^4 - 2*(a^2*b^3*c - 4*a^
3*b*c^2)*d^3*e + (a^2*b^4 - 2*a^3*b^2*c - 8*a^4...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {d + e x^{2}} \left (a + b x^{2} + c x^{4}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**4+b*x**2+a)/(e*x**2+d)**(1/2),x)

[Out]

Integral(1/(sqrt(d + e*x**2)*(a + b*x**2 + c*x**4)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+b*x^2+a)/(e*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{\sqrt {e\,x^2+d}\,\left (c\,x^4+b\,x^2+a\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((d + e*x^2)^(1/2)*(a + b*x^2 + c*x^4)),x)

[Out]

int(1/((d + e*x^2)^(1/2)*(a + b*x^2 + c*x^4)), x)

________________________________________________________________________________________